

Thymosiosterol and Δ^{24} Thymosiosterol, new Sterols from the Sponge Thymosiopsis sp.

Valérie Bultel-Poncé[†], Jean-Paul Brouard[†], Jean Vacelet[‡] and Michèle Guyot^{†*}

†Laboratoire de Chimie du Muséum National d'Histoire Naturelle, associé au CNRS, 63 rue Buffon, 75005 Paris, France. ‡Centre d'Océanologie, (CNRS-Université de la Méditerranée), Station Marine d'Endoume, 13007 Marseille, France

Received 18 January 1999; accepted 13 February 1999

Abstract. Two new sterols were isolated from the sponge *Thymosiopsis* sp. and their structure elucidated by 2D NMR spectral data. © 1999 Elsevier Science Ltd. All rights reserved.

The sponge *Thymosiopsis* sp. is an undescribed species collected near La Ciotat (France). ¹ Chromatography of the dichloromethane extract over a silicagel column (dichloromethane-acetone 95:5) gave, as the major constituent, a mixture of sterols (30% of the extract, 0.1 % dry weight). GC-MS ² analysis of the TMS derivatives indicated two major sterols: retention time 19.14 mn (m/z 498) and 20.37 mn (m/z 500) corresponding to sterols having M⁺ 426 and M⁺ 428 respectively. These sterols were unseparable on a C-18 reverse phase, however separation on argentic silicagel plates of the acetylated mixture ³ allowed to obtain pure sterol acetates, which, after CO₃K₂-MeOH hydrolysis and silicagel chromatography afforded pure 1 and 2. Compound 1, m.p. 136-137° C, [α]_D +6 (c 0.2, CHCl₃), HRCIMS [M+H]+ m/z 429.4096 in agreement with C₃₀H₅₃O. The ¹H NMR data of 1 displayed a broad singlet at δ 5.15 ppm characteristic for a Δ ⁷ vinyl proton. ⁴ The resonances assigned to the 18 and 19 methyl protons (δ 0.51 and 0.77 ppm, respectively) confirmed the Δ ⁷ unsaturation. ^{4, 5} The ¹³C NMR signals at δ 13.8 and 117.4 ppm are also consistant with those of C-7 and C-8 of a Δ ⁷ nucleus, as well as the signals at δ 11.8 and 13.0 for C-18 and C-19.

$$R = 20$$

$$2 R = 20$$

The ^{1}H NMR spectrum showed signals for seven methyl groups: two singlets for C-18 and C-19 carbons and five doublets. A normal sterol side-chain would require an additional doublet or a triplet, and apparently we had a sterol with an extended side-chain. Combination of COSY and heteronuclear correlations (HMBC, HMQC) experiments allowed to assign all proton and carbon chemical shifts. However, some signals in the ^{1}H spectrum overlap and it is difficult to describe their multiplicity. HMBC experiments furnished correlations between Me-29 and 30 protons and carbons 25 and 26, correlations of Me-28 protons with carbons 24, 25 and 26, and correlations of Me-27 protons with carbons 23, 24, 25. Other correlations are listed in the table. These observations allowed to assign the 24,26,26-trimethyl cholest-7en-3 β ol structure. In the NOESY spectrum of 1, NOE was observed from H3 to H5, confirming the β position of H5, but no significant NOE allowed to assign the configuration at C25 which remains undetermined.

0040-4039/99/\$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved. *PII*: S0040-4039(99)00358-5

^{*} Fax: 33-1-40-79-31-35; E-Mail: guyot@mnhn.fr

Compound 2, m.p. 125-127° C, [\alpha]D +10 (c 0.2, CHCl₃), HRCIMS [M+H]+m/z 427.3938, in agreement with C₃₀H₅₁O. The ¹H and ¹³C NMR spectra of 2 also showed the characteristic signals for a Δ^7 sterol. In addition, the ¹H spectrum, showed two doublets at δ 4.66 and 4.69 due to a methylene group. This was confirmed by ¹H-¹³C NMR correlations which clearly showed correlations between protons 23 at δ 2.03 with carbons resonating at δ 107.6 and 155.1. Correlations between 29 and 30 methyl protons and carbons 25 and 26, of methyl at δ 0.94 with carbons 24, 25, 26, and of exo-methylene protons with carbons 23, 24 and 25 completed the structure. MS fragmentation at m/z 314 confirmed that the side-chain bears an unsaturation at the 24 position. Thus 2 was assigned the 24,26,26-trimethyl cholesta-7,24(27)dien-3 pol structure.

Table: ¹³C (75 MHz) and ¹H (300 MHz) NMR data of 1 and 2 (δ ppm, CDCl₃)

Compound 1				Compound 2		
position	¹ H (mult., <i>J</i> (Hz))	13 _C	HMBC	¹ H (mult., <i>J</i> (Hz))	13 _C	HMBC
1	1.25	34.2	3,5	1.25	34.2	3,5
2	1.70	31.5	3,4	1.70	31.5	3,4
3	3.51 (m, 1H)	71.1	2,4	3.51 (m, 1H)	71.1	2,4
4	1.31	37.1	3,5	1.31	37.1	3,5
5 6	1.35	40.2	-	1.35	40.2	_
6	1.77	2 9.7	5,4	1.77	29.7	5,4
7	5.15 (br s, 1H)	117.4	-	5.15 (br s, 1H)	117.4	-
8	-	139.6	-	-	139.6	-
9	1.60	49.4	-	1.60	49.4	-
10	-	38.0	-	ļ -	38.0	-
11	1.45-1.52	21.5	13	1.45-1.52	21.5	13
12	2.01 (dt,1H)-1.23 (m,1H)	39.6	13, 18	2.01 (dt,1H)-1.23 (m,1H)	39.6	13, 18
13	-	43.4	-	-	43.4	-
14	1.77	55.0	8 8	1.77	55.0	-
15	1.50	22.9	8	1.50	22.9	-
16	1.37	27.9	-	1.37	27.9	-
17	1.18	5 6.1	13, 16, 18	1.18	56.1	13, 16, 18
18	0.51 (s, 3H)	11.8	12, 13, 14, 17	0.51 (s, 3H)	11.8	12, 13, 14, 17
19	0.77 (s, 3H)	13.0	1, 5, 9, 10	0.77 (s, 3H)	13.0	1, 5, 9, 10
20	1.32	36.4	-	1.37	36.4	-
21	0.88 (d, J=6.5, 3H)	18.8	17, 20, 22	0.92 (d, J=6.5, 3H)	18.8	17, 20, 22
22	1.08	33.6	-	1.24	38.1	-
23	1.23-1.83	28.3	-	2.03	39.5	-
24	1.40	35.0	-	-	155.1	-
25	0.98	44.6	·	1.80	47.3	-
26	1.62	29.5	29,30	1.77	30.9	-
27	0.82 (d, J=6.7, 3H)	18.7	23, 24, 25	4.66 (d, <i>J</i> =1.4, 1H)	107.6	23, 24, 25
				4,69 (d, J =1.1, 1H)		
28	0.73 (d, $J=6.9, 3H$)	11.4	24, 25, 26	0.94 (d, J=6.5, 3H)	16.8	24, 25, 26
29*	0.80 (d, <i>J</i> =6.8, 3H)	21.9	25, 26	0.81 (d, J=6.6, 3H)	21.8	25, 26, 30
30*	0.85 (d, J=6.8, 3H)	18.3	25, 26	0.82 (d, J=6.5, 3H)	18.9	25, 26, 29

^{*} May be reversed

Sterols bearing such an extended side-chain are seldom found in Nature: a Δ^5 sterol having a side-chain with the same substitution pattern as in 2 was previously described as a trace constituent of the sterol content of a Chrysophyte alga. 6 A Δ^7 sterol, 24,26,26-trimethyl cholesta-7,25(27)-dien-3 β ol, with a similar side-chain as in 2, was isolated as the major sterol of the sponge Aciculites pulchra 4 (taxonomically unrelated to Thymosiopsis); the side-chain of 1 is unprecedented. These sterols are likely biosynthesized by a double methylation at the 26 position. ⁴ Moreover 1 and 2 possess a Δ^7 nucleus, a rare type of nuclear unsaturation in sponges. 7

References

- The sponge Thymosiopsis sp. will be described later (voucher MNHN DJV 63), it is a near relative of T. cuticulitus Vacelet & Perez.
- CPSi18 column, Chrompack, 100°C to 290°C, 10°C/mn, helium flow rate 1ml/mn.
- Kokke, W.C.M.C.; Pak, C.S.; Fenical, W.; Djerassi, C. Helv. Chim. Acta, 1979, 62, 1310-1318. Crist, B.V.; Li, X.; Bergquist, P.R.; Djerassi, C. J. Org. Chem., 1983, 48, 4472-4479.

- Rubinstein, I.; Goad, L.J.; Clague, A.D.H.; Mulheirn, L.J. Phytochemistry, 1976, 15, 195-200. Kokke, W.C.M.C.; Shoolery, J.N.; Fenical, W.; Djerassi, C. J. Org. Chem., 1984, 49, 3742-3752. Kerr, R.G.; Baker, B.J. Nat. Prod. Rep. 1991, 8, 465-497.